
David Rowe is president of David M Rowe Risk Advisory, a risk
management consulting fi rm. Email: davidmrowe@dmrra.com

knows the story of the silicon-based
transistor and the impact it had on

digital computer design – enabling engineers to dispense
with the large, expensive vacuum tubes that were the � rst
binary logic device and triggering a decades-long process of
miniaturisation. What is often forgotten is the impact this
revolution had on programming logic.

In the vacuum tube era, binary logic units were a scarce
resource – indeed a binding constraint on computer
performance – so a lot of e� ort was devoted to minimising
the number of physical logic gates required to solve a given
problem.1 After the advent of the transistor, logic gates
became cheap and plentiful, growing ever more so with the
march of Moore’s Law, which states that the number of
transistors in computer chips doubles more or less every
two years. While logic gate minimisation continued to play
a role in the theory of computer science, its practical
importance declined dramatically.

­ is is an early example of a recurring phenomenon,
namely a hardware breakthrough revolutionising optimal
system design. Two more recent examples come to mind. In
the early to mid-1990s, I was involved in the development of
a global trade database at Bank of America. At the time,
global network communication was still a comparatively
scarce and expensive resource, so the system relied on highly
structured � les in which the rigid format carried signi� cant
implicit information on the meaning of the data they
contained. It is no coincidence that self-describing messages
using XML-based protocols only emerged in parallel with
the massive growth of global communication capacity

during the dotcom boom. ­ ese protocols are highly
� exible and ideally suited for real-time event-driven

updates but they are relatively verbose – requiring
considerable metadata to clarify the meaning of
the numerical values being transmitted.

A still more recent example is the rise of
multi-core processors and the deployment of server
farm con� gurations in the middle of the � rst
decade of this century. Until then, virtually all
mainstream computing involved sequential
calculations on a single core processor. While some
simple ways of leveraging multiple processors

o� ered material performance improvements,
obtaining the full bene� t of this new architecture

demanded fundamental rewrites of most applications.
Today, risk management applications are respond-

ing to two further hardware advances. ­ e � rst is the
dramatic decline in both the absolute and the relative
cost of volatile memory. Traditionally, the massive
volume of detail produced by a large Monte Carlo
simulation could only be stored on mechanical external
devices. Physical constraints, such as disc rotation speed,
made certain types of program architecture impractical.
In many cases, such intermediate data was discarded
once its contribution to the ultimate end result was
extracted. ­ is made it di� cult or impossible to examine
the extreme tails of the distribution to isolate what was
driving these results. Today, it is far more commercially
practical to hold this massive volume of data in active
memory, allowing both sophisticated analysis and ad hoc
queries of the extreme results to support scenario analysis
and stress testing.

Another hardware innovation is the emergence of the
graphics processing unit (GPU), which is used to power
modern computer games. As a light-hearted quip among
gamers puts it, “Why waste good technology on science and
medicine?” In fact, of course, it should be the other way
around – this hardware is only produced in volume because
of the tens of billions of dollars generated by the computer
gaming industry. Five years ago, the state of the art in parallel
processing was to use a server farm with multiple central
processing units (CPUs) on each machine, but the number
of arithmetic/logic units (ALUs) per CPU is actually quite
small – an important constraint, since it is ALUs that handle
arithmetical calculations. A GPU, by contrast, sacri� ces
� exibility for raw computational power and can provide
thousands of ALUs at far less cost than is possible with
multiple CPUs. Once again, hardware advances are render-
ing our existing software con� gurations obsolete.

­ e lesson for risk management software applications is
that much more attention must be paid to what I call
dynamic rather than static e� ciency. Dynamic e� ciency is
the ability to incorporate new technology smoothly and
e� ciently as it becomes available. In my experience, the
institutional di� culty in accomplishing this is often the
Achilles heel of in-house risk systems. Overcoming such
obstacles will take a combination of disciplined adherence
to a � exible architecture and intelligent integration of
relevant vendor software. Lacking this, � rms will continue
to confront the problem so eloquently voiced by that wise
cartoon character Pogo, when he said, “We are surrounded
by insurmountable opportunities”. ■

David Rowe is president of David M Rowe Risk Advisory, a risk
management consulting fi rm. Email: davidmrowe@dmrra.com

RISK ANALYSIS

The shift from vacuum tubes to transistors revolutionised the optimum approach to software
design – and banks’ risk technology strategy should be formulated with this lesson in mind,
argues David Rowe

Everyone

The case for dynamic e� ciency

1 While there appears to be no general solution to the logic gate minimisation problem, various
tools such as Veitch diagrams (1952) or a re� nement known as Karnaugh maps (1953) can assist
in deriving optimal solutions for speci� c logical requirements (see http://en.wikipedia.org/
wiki/Karnaugh_map)

