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knows the story of the silicon-based 
transistor and the impact it had on 

digital computer design – enabling engineers to dispense 
with the large, expensive vacuum tubes that were the � rst 
binary logic device and triggering a decades-long process of 
miniaturisation. What is often forgotten is the impact this 
revolution had on programming logic.

In the vacuum tube era, binary logic units were a scarce 
resource – indeed a binding constraint on computer 
performance – so a lot of e� ort was devoted to minimising 
the number of physical logic gates required to solve a given 
problem.1 After the advent of the transistor, logic gates 
became cheap and plentiful, growing ever more so with the 
march of Moore’s Law, which states that the number of 
transistors in computer chips doubles more or less every 
two years. While logic gate minimisation continued to play 
a role in the theory of computer science, its practical 
importance declined dramatically.

­ is is an early example of a recurring phenomenon, 
namely a hardware breakthrough revolutionising optimal 
system design. Two more recent examples come to mind. In 
the early to mid-1990s, I was involved in the development of 
a global trade database at Bank of America. At the time, 
global network communication was still a comparatively 
scarce and expensive resource, so the system relied on highly 
structured � les in which the rigid format carried signi� cant 
implicit information on the meaning of the data they 
contained. It is no coincidence that self-describing messages 
using XML-based protocols only emerged in parallel with 
the massive growth of global communication capacity 

during the dotcom boom. ­ ese protocols are highly 
� exible and ideally suited for real-time event-driven 

updates but they are relatively verbose – requiring 
considerable metadata to clarify the meaning of 
the numerical values being transmitted.

A still more recent example is the rise of 
multi-core processors and the deployment of server 
farm con� gurations in the middle of the � rst 
decade of this century. Until then, virtually all 
mainstream computing involved sequential 
calculations on a single core processor. While some 
simple ways of leveraging multiple processors 

o� ered material performance improvements, 
obtaining the full bene� t of this new architecture 

demanded fundamental rewrites of most applications.
Today, risk management applications are respond-

ing to two further hardware advances. ­ e � rst is the 
dramatic decline in both the absolute and the relative 
cost of volatile memory. Traditionally, the massive 
volume of detail produced by a large Monte Carlo 
simulation could only be stored on mechanical external 
devices. Physical constraints, such as disc rotation speed, 
made certain types of program architecture impractical. 
In many cases, such intermediate data was discarded 
once its contribution to the ultimate end result was 
extracted. ­ is made it di�  cult or impossible to examine 
the extreme tails of the distribution to isolate what was 
driving these results. Today, it is far more commercially 
practical to hold this massive volume of data in active 
memory, allowing both sophisticated analysis and ad hoc 
queries of the extreme results to support scenario analysis 
and stress testing.

Another hardware innovation is the emergence of the 
graphics processing unit (GPU), which is used to power 
modern computer games. As a light-hearted quip among 
gamers puts it, “Why waste good technology on science and 
medicine?” In fact, of course, it should be the other way 
around – this hardware is only produced in volume because 
of the tens of billions of dollars generated by the computer 
gaming industry. Five years ago, the state of the art in parallel 
processing was to use a server farm with multiple central 
processing units (CPUs) on each machine, but the number 
of arithmetic/logic units (ALUs) per CPU is actually quite 
small – an important constraint, since it is ALUs that handle 
arithmetical calculations. A GPU, by contrast, sacri� ces 
� exibility for raw computational power and can provide 
thousands of ALUs at far less cost than is possible with 
multiple CPUs. Once again, hardware advances are render-
ing our existing software con� gurations obsolete.

­ e lesson for risk management software applications is 
that much more attention must be paid to what I call 
dynamic rather than static e�  ciency. Dynamic e�  ciency is 
the ability to incorporate new technology smoothly and 
e�  ciently as it becomes available. In my experience, the 
institutional di�  culty in accomplishing this is often the 
Achilles heel of in-house risk systems. Overcoming such 
obstacles will take a combination of disciplined adherence 
to a � exible architecture and intelligent integration of 
relevant vendor software. Lacking this, � rms will continue 
to confront the problem so eloquently voiced by that wise 
cartoon character Pogo, when he said, “We are surrounded 
by insurmountable opportunities”. ■
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1 While there appears to be no general solution to the logic gate minimisation problem, various 
tools such as Veitch diagrams (1952) or a re� nement known as Karnaugh maps (1953) can assist 
in deriving optimal solutions for speci� c logical requirements (see http://en.wikipedia.org/
wiki/Karnaugh_map)


